一般選抜(後期日程)「理科(化学)」 (食産業学群)

第1問

問1	矢印 b		日日 つ	●梅 ∧			
P]	ZHID		問 2 電極 A 				
問 3	陽極	酸素 (02)		陰極	水素 (H ₂)		
問 4	陽極で発生する酸素と陰極で発生する水素の物質量の比は、酸素:水素=1:2となり、質量は合わせて3.60×10 ⁻² g発生したことから、酸素の物質量をx mol、水素の物質量をy molとすると、2x=yと32x+2y=3.60×10 ⁻² の2つの式が成り立つ。これらを連立方程式として解くことにより、陽極で発生した酸素の物質量が1.00×10 ⁻³ mol、陰極で発生した水素の物質量が2.00×10 ⁻³ molとなる。						
問 5	流れた電子の物質量は、発生した酸素の 4 倍、発生した水素の 2 倍の量となるため、問 2 より 4.00×10^{-3} mol となる。そのため、流れた電流の大きさは、 $(4.00 \times 10^{-3}$ mol $\times 9.65 \times 10^4$ C/mol)÷ 3.86×10^3 秒 = 1.00×10^{-1} A $(0.100$ A) となる。						
問 6	陽極	極 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$					
	陰極	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$					
問 7	陽極では、 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ の反応が起こり、酸性を示す原因となる H^+ が生成する。 一方、陰極では、 $Ag^+ + e^- \rightarrow Ag$ の反応が起こり、酸性を示す原因となる H^+ や塩基性を示す原因となる OH^- の生成や消費が起こらない。 以上より、水溶液全体では H^+ の量が増加するため、電気分解により pH が低下する。						
問 8	流れた電子 1 mol あたりの水溶液 Y で析出する Ag の物質量は 1 mol, 水溶液 Z で析出する銅の物質量は 0.5 mol である。そのため、水溶液 Y で析出する Ag の質量は 108 g、水溶液 Z で析出する Cu の質量は 0.5 × 63.5 g となる。流れた電気量が同じであれば、流れた電子の物質量も同じであることから、水溶液 Y で析出する物質の質量の方が多い。						

第2問

<u> </u>	•							
問 1	1)	15	2	5				
問 2	3	白金	4	オストワルト				
	5	酸化	6	不動態				
	(1)	ハーバー法(ハーバー・ボッシュ法)						
問3	(2)	H:N:H H						
	(3)	$2NH_4C1 + Ca (OH)_2 \rightarrow CaC1_2 + 2H_2O + 2NH_3$						
	(1)	$NH_3 + 2O_2 \rightarrow HNO_3 + H_2O$						
問 4	(2)	空気の体積を X L とすると、 100×10 ³ g/17×2×22.4 L/mol = X L ×20.0/100 X = 1.32×10 ⁶ L よって、1.32×10 ⁶ L 必要である。						
問 5	(1)	$3Cu + 8HNO_3 \rightarrow 3Cu (NO_3)_2 + 4H_2O + 2NO$						
	(2)	$Cu + 4HNO_3 \rightarrow Cu (NO_3)_2 + 2H_2O + 2NO_2$						
問 6	鉄やアルミニウムの表面に、ち密な酸化皮膜が生じる。							

第3問

男も同	J									
問1	1	異性体	<u> </u>	2	グリコシド	3	アミロース			
	4	デキス	ストリン	5	マルトース					
	(1)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$								
問 2	(2)	270 g/180×2×46=138 g よって、1.38×10 ² g (138 g) のエタノールが生じる。								
問3	転化制									
問 4	(a) (b) H CH ₂ OH H OH H HO CH ₂ OH									
問 5	(1)	A	A 加水分解によって最も多く生じるAは、3 つの-0H 基が-0CH ₃ 基に変化しているため、分子量は、180+14×3=222							
		BはCよりも多くの-OH 基をもっていることから、Bは 2 -OH 基が、Cは4つの-OH 基が-OCH₃基に変化しているものわかる。Bの分子量は、180+14×2=208								
		С	Cは4つの 180+14×		-	しているた	≥め, Cの分子量は,			
	(2)	A:B:C =2.553/222:0.104/208:0.118/236 =1.15×10 ⁻² :5.00×10 ⁻⁴ :5.00×10 ⁻⁴ =23:1:1 1 分子のBが枝分かれ1つに対応していることから、25 個のグルコースあたり1つの枝分かれがある。アミロペクチン1分子あたり2.5×10 ³ 個のグルコースで構成されていることから、2.5×10 ³ 個/25=100 個、すなわち 100 個の枝分かれがある。								

第4問

	J						
問1	1)	触媒		2	活性化エネルギー		
問 2	100 分間の酢酸エチルの濃度変化が 0.40 mol/L となるので, 0.40 mol/L÷100 min=4.0×10 ⁻³ mol/(L·min)						
問3	反応開始 100 分間の酢酸エチルの平均のモル濃度が 0.60 mol/L となるので、 4.0×10^{-3} mol/(L・min) =k・0.60 mol/L より、 $k = \frac{4.0 \times 10^{-3}}{0.60}$ /min=6.7×10 ⁻³ /min						
問 4	反応開始から 150 分後の酢酸エチルのモル濃度を x mol/L とすると, $\frac{0.80\text{mol/L}-\text{x mol/L}}{150\text{ min}} = \frac{4.0 \times 10^{-3}}{0.60} / \text{min} \cdot \frac{0.80\text{mol/L}+\text{x mol/L}}{2}$ が成り立ち, この方程式を解くと x=0.27 となるため, $150 分後の酢酸エチルのモル濃度は, 2.7 \times 10^{-1} \text{ mol/L} (0.27 \text{ mol/L}) となる。$						
問 5	酢酸エチルの半減期が 100 分であることから,反応開始から 300 分後の酢酸エチルのモル濃度は,0.80 mol/L×1/2³=0.10 mol/L となる。そのため,反応開始から 300 分間の酢酸エチルの物質量の減少量は 0.70 mol/L となる。反応式から,酢酸エチルの物質量の減少量と酢酸の物質量の増加量は等しいため,300 分後の酢酸のモル濃度は,7.0×10 ⁻¹ mol/L (0.70 mol/L) となる。						
問 6	(n	1.00 0.90 酢 0.80 酢 0.70 の 0.60 し 0.50 ル濃 0.40 度 0.30 nol/L) 0.20 0.10 0	50 100	150			